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Numerical solutions based on the method of kinetic flux-vector splitting (KFVS)
for the Navier—Stokes equations are compared with results from the direct simula-
tion Monte Carlo method (DSMC) for three problems: an impulsively started piston,
which emphasizes heat flux; an impulsively started flat plate, which emphasizes
shearing stress; and a plate sliding past a square cavity, or the lid-driven cavity prob-
lem, which combines both stress and heat flux. Taking the view that the DSMC
method provides the correct physical description near material boundaries, the com-
parisons which were carried out for the conditions of a slightly rarefied flow show
good agreement for temperature slip, velocity slip, and in the prediction of the kinetic
split fluxes, verifying the assumptions and the approach taken in the development of
the KFVS method. (© 1998 Academic Press

Key Wordsgas-kinetic scheme; flux-splitting; Navier—Stokes; flux boundary con-
ditions.

I. INTRODUCTION

The theoretical development for the method of kinetic flux-vector splitting (KFVS)
the Navier—Stokes equations was introduced in Ref. [4], which represents an extens;
work with the Euler equations initiated by Pullin [10] and further developed by Mandal :
Deshpande [6,7]. Additionally, KFVS was shown for several sample problems to give ¢
agreement with established numerical schemes for the Navier—Stokes equations. Bol
conditions based on the new split fluxes and the kinetic theory were also develop
[4] and shown to predict slip (first order) at a material surface, as a gas becomes rar
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However, confirmation for the magnitude of the predicted slip and the conditions un
which the correct predictions are found were not fully explored. Also not given was supp
for the use of a critical approximation, based on the Eucken model, which was introdu
to carry out the flux-splitting for energy, in the case of a gas having internal structu
The objective of the present work is to provide the appropriate analysis by comparing
predictions of the theory presented in [4] with the results of simulations carried out w
the direct simulation Monte Carlo (DSMC) method [2,3], a method of simulation where
large collection of particles is used to model a rarefied gas flow. Of course, the comparis
can only be carried out in the near-continuum regime, where the computational cost for
DSMC method does not become prohibitive. Likewise, for the KFVS equations to hold t
flow should only be slightly rarefied and the magnitudes of stress and heat flux must lie
range where the occurrence of slip near a solid surface represents the principal modific:
to the fluid physics (first-order slip). However, these conditions are wholly consistent w
the objective in [4], where the KFVS method was introduced as the continuum countery
to the DSMC method in an eventual construction of a hybrid scheme combining the tw

The version of the DSMC method used in this study [1,8] divides space into unifor
cubical cells. These cells are used to identify which particle pairs are candidates for collis
during a time step and to compute cell-averaged macroscopic quantities at the end of a
step. In general terms, the DSMC method is expected to give reliable results when the |
mean-free path length is large, compared with the cell dimension. Particular experience:
the case of Couette flow has shown that good agreement for viscous stress and heat f
obtained between DSMC and NS when the cell Knudsen number is greater than unity,
progressively more modest agreement is found as itis made smaller [5]. In our comparis
the local cell Knudsen number appearing in the DSMC simulations approached unity ¢
for a single cell and flow condition studied. The molecular model chosen for the simulatic
was the hard-sphere molecule, for which the transport coefficients vary as the square
of the temperature. In the case of a diatomic gas, the vibrational mode was not exci
while the rotational degrees of freedom were set to be in equilibrium with the translatiol
degrees of freedom, by setting the so-called collision nhumber in DSMC to unity. In t
simulation, this leads to the ideal diatomic gas for whick 7/5.

Two issues are addressed in this study: (i) in the case of a simple gas, the theor
[4] is rather securely founded, and therefore, the primary question relates to whether
magnitude of the predicted slip for the particular flow conditions considered is in agreem
with results obtained from DSMC simulations; and (ii) in the case of a gas with intern
structure, the flux-splitting employed in [4] is based on the Eucken approximation, whi
directly affects the predicted split energy fluxes, and the particular approximation u:
requires confirmation, especially at or near a material surface where nonequilibrium effi
may be large. These questions will be investigated by studying the highly nonequilibri
flow produced near material surfaces for three problems: an impulsively started pisi
which emphasizes heat flux; an impulsively started flat plate, which emphasizes shea
stress; and a plate sliding past a square cavity, or the lid-driven cavity problem, wh
combines both stress and heat flux as important quantities.

As will be seen below, one of the principal benefits of the KFVS formulation is th:
it not only leads to a solution of the NS equations but it is also able to account for s
boundary conditions in a natural way which correspond precisely to the first-order <
boundary conditions studied by Patterson [9]. Alternatively, if one were interested in r
slip boundary conditions then these, too, can be applied. As a result, it is convenien
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regard KFVS and NS as equivalent systems, with KFVS having somewhat greater f
bility in the specification of boundary conditions. In addition, it should be noted that t
introduction of first-order slip leads to a near-continuum theory and does not capture the
physics of the well-known Knudsen layer studied in kinetic theory, which lies within a d
tance of several mean-free path lengths from a material surface. Thus, in comparison:s
the DSMC method, the two approaches are not expected to precisely agree in every me
in the immediate vicinity of a material surface, as only the DSMC method is capable
capturing the correct physics.

Il. THE KFVS EQUATIONS

The split kinetic fluxes for the Navier—Stokes equations are given by Eqgs. (39)—(44
Ref. [4] and these are reproduced for use here, where the notation employed is the
and they read

mass = pVRT/2[(1£ 1) S £ az(1— x1)] (1)
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A Cartesian coordinate system is assumed in the above equations, with the normal dire
represented by, and the two tangential directionstiyandt 2. The dimensionless veloci§y

Qic =—-K®—



492 LOU, DAHLBY, AND BAGANOFF

(speed ratio) determines the two paramedg@ndoa,, while the dimensionless, Chapman—
Enskog expressions for stres%EAand heat fluxgSE are the nonequilibrium factors in the
guantitiesys, x2, andys. The sign convention employed assumes the positive spliffiux
points in the direction of increasingand is directed out of a surface enclosing a body o
gas. The convention fdF ~ is based on the splitting = F* + F~, whereF is the total
flux, and thereford-— often evaluates to a negative value. The corresponding expressi
for F5_omiS NOt listed as it can be inferred from (3).

Extreme nonequilibrium conditions in a gas are found near isothermal boundaries, wt
the one-sided fluxes are large, and these provide unique conditions for detailed study.
relations developed for an isothermal boundary are given by Eqgs. (63)—(66) in Ref. [4] :
these are also listed below, where again the same notation is followed,

(Fntas = pwv RTw/2m, (7
(Fn—mom)surface= ( Frr—mom) g + pw/2, (8)
(Fta-mom)surface = ( Fti—mom) g’ (9)

(

(Fenerg))surfacez energy) Pw v/ 2RTy/m l:l + - (5)/ 3:)[/ >:| . (10)

Inthe above relations, the state of the gas near a surface is denoted by subscript g, whi
state of the hypothetical wall gas is denoted by subscript w. These relations were devel
in [4] using DSMC type boundary conditions for a nonreacting gas, in which the wall can
viewed as a hypothetical gas at conditions determined by the particular boundary condit
employed. In this case, the wall gas is the same gas because of the assumed nonre
interaction between gas molecules. Likewise, the sign convention assumed in the boun
conditions (7)—(10) is one where a positive flux points in the direction of positi{eto
the wall), when viewed from the position of the gas at an interface with a wall.

lll. IMPULSIVELY STARTED PISTON

The interestin animpulsively started piston is associated with the fact that the heat tran
rate to an isothermal piston can be very high at early time, leading to large nonequilibri
effects. On the other hand, the impulsive start requires special attention, as will be s
Because it is not obvious from the structure of Eqgs. (7)—(10) how the condition of zero <
is recovered in the continuum limit, and because DSMC simulations become overly co
in this limit, itis desirable to further develop the theoretical expressions so that comparis
can be more readily assessed. The continuum limit is obtained for conditions of high den
and large time when the boundary layer is relatively thick in relation to the local mean ft
path length. For the one-dimensional geometry of an impulsively started piston, where
t1 andt2 coordinates are ignored, this leads to small values of the surviving dimensionl
derivativest€E andgSE, generally withr$E « GSE. For calculational purposes, it is easier to
consider a moving gas and a stationary piston, and therefore, at the piston surface itis aj
priate to set the speed ratio to zero, §¢=0. Thusw; = 0 andw, = 1/./7. On using (1) to
represent the gas near a surface and on using boundary condition (7), the following relat
between the conditions in the gas flow and the hypothetical wall-gas values are obtain

1 T, 1 T,
Po(1—zxe) = |22 Pofg_ g} /0, (11)
Pw 2 Tg Pw 2 Tw
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wherep = pRT is used for both the gas flow and the hypothetical wall gas. When Egs. (
(6) are substituted into boundary condition (10) and on making use of (11) we obtain
the total energy flux at the surface the relation

4(Fenerg))surface= 56CE + 1 <V + 1) <1 TW>

Vi\r=1\" T,
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The definition for the total energy flux in the coordinate system for wijck 0 simplifies
to the relation( Fenergysurface= q,?E, and consequently, the above equation reduces to

1ce\Tw vy =1\ ,ce 1/3y—-1\.c
(1 ztnn>_|_g—1 5ﬁ<y+l>qn 2\ 551 T (13)

For an isothermal piston, heat conduction represents the dominant effect at large
Therefore, the above equation can be approximatedJpr<C 1 by

=1 (L) v e 14)
which shows that the gas temperature near the suifigapproaches the wall temperature
Tw, as the magnitudes of the nonequilibrium parameters become smaller and small
approaching the continuum limit (because of the presenperothe definitions ot’=1/p
andf =g/ pc). For positive heat flux, i.e. heat flux directed towards the wall, the gas temy
ature is greater than the wall temperature. An entirely equivalent first-order slip condi
for the case of slightly rarefied flow of a monatomic gas was obtained by Patterson a
is easy to show that Eq. (14) fully agrees with Patterson’s result (Ref. [9, Eq. (33), p. 12
This agreement is found on settipg= 5/3, Prandtl numbe& 2/3, and then approximating
(14) for the inverted ratidy/ T. Additionally, it has been shown by Shidlovskiy [11], agair
for the case of a monatomic gas, that inclusion of the thermal accommodation coefficie
introduces a factof2 — «) /o multiplying the heat flux term (Ref. [11, Eq. (3.16), p. 67]).
Equation (14) was developed here for two purposes: to show that the KFVS formula
(1)—(6) and the associated boundary conditions (7)—(10) agree with related work ar
introduce the extension to the case of a polyatomic gas.

Returning to the more descriptive view, where the gas and piston are both stationary
at one temperature before the start of the motion, then the larger the piston velocity
the impulsive start the larger the Mach number associated with the shock wave prodt
and the greater the changes in density and temperature across the gas layer forme
the piston. When one employs the continuum (KFVS or NS) point of view, a discontint
appears at the wall in both the temperature and the fluid velocity atttis@", and the
corresponding heat flux and normal stress are infinite, and this occurs even for low ve
of the piston velocity. Clearly, the equations do not predict the correct physical proces
very early time. This raises the interesting question for this nonsteady problem whe
a numerical solution of the continuum equations for large time would be independer
developments at early time.

Because Eqg. (14) is an analytic result which does not depend explicitly on time, it
be used to qualify a numerical solution of the KFVS equations, because one would ex
(14) to provide the correct prediction as a numerical solution is sequentially improved.
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FIG. 1. Gas temperature at the surface of an impulsively started isothermal piston moving into a statior
monatomic gas. Theoretical relation given by Eq. (24)-(-). Numerical integration of the KFVS equations for
Mopiston= 1, ¥ =5/3, and reference cell Knudsen numbep, =2 (---); 4 (----); 8 (-- - - -); and 16 ( ).

need for a reliable numerical check is the principal reason why the temperature ratio in
was not inverted, i.e. to correspond more directly to Patterson’s expression. On using
variables defined by Eq. (14), the analytical relation plots as a straight line, which is shc
as a heavy dashed line in Fig. 1 (notg:pc=5G/+/2y). The four numerical solutions
shown in the figure were carried out for the case of a monatomic gas and a piston M
number of unity(Mshock= 1.869), using a second-order finite-volume scheme (first-orde
time), together with a range of cell sizes (see Ref. [4] for identification of the scheme use
Time appears as a parameter along each curve, with large time corresponding to small v:
of the abscissa. The physical scale is set by the values of the undisturbed dgrsityed

of soundcy, coefficient of viscosityug, and cell lengthAx. These quantities can either
be used to define a reference cell Reynolds number or a reference cell Knudsen nut
through the kinetic-theory, hard-sphere relation.

57 —
= —pCA 15
n=5pCh, (15)
whereC = +/8RT/m is the mean thermal speed ani$ the mean free path length. Because
we are interested in comparisons with DSMC, it is physically more meaningful to use
reference cell Knudsen numbé&ing = 1o/ AX, With X =X/Ag, T =tCo/Ao = t/t¢, and

- — | 8 At
Al = AtCy/AXKng = | — <C°)/Kno, (16)
Ty \ AX
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as measures of the physical scale. The numerical solutions are shokimfer2, 4, 8, 16
and we see that the largest value is needed to get good agreement with {I.4)Tige- 0.8.
Because the gas density near the piston surface is nearly four times the undisturbed d
(see Fig. 3), this translates inkn, ~4 and therefore we must havex < Ayq /4 to
obtain a reliable solution at early time. The conditions rtea0™ necessitated the use of
a very smallAf. This led to the use of values o§At/Ax ranging from 0.15 to 0.0375 as
the Knudsen number was increased. At this point we do not know whether the range ¢
independent variable displayed in Fig. 1 corresponds to conditions where the KFVS sy:
predicts the correct physics, only that the values employed are required for a consi
numerical solution of the equations.

In turning to a DSMC simulation, it is clear that the same reference cell Knudsen nt
ber, Knp =16, should initially be used in making a comparison. Figure 2 shows suc

-12 -10 -8 -6 -4 -2 0
Spatial Position, a/Ag

FIG.2. Gastemperature and density ahead of an isothermal piston (loc&ted®tffor KFVS (solid curves)
and DSMC (symbols), at two early times in the formation of the shock wave and the thermal layegfp=M
andy =5/3. Dimensionless times correspondte 4.64 andf = 11.6.
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comparison for two times: a time at which the shock wave and the thermal layer are t
still forming, f = 4.64 (1600 time steps KFVS, 400 DSMC); and the time at which they jus
begin to separatd,=11.6 (4000 time steps KFVS, 1000 DSMC). Numerical instability
with KFVS at early time necessitated a smaller time step (factor of 4) than that used w
DSMC. The dimensionless time employed is based on the collision time in the referel
state and so these times are truly short. At the early time the temperature profiles m
somewhat poorly overall, while at the later time the thermal layers, as opposed to the st
layers, begin to match rather well. Because density is a less sensitive variable, the mat
both times is surprisingly good, considering the extremely short time represented. Bec:
the DSMC method is computationally intensive, it was necessary to increase the value
At and Ax by a factor of 4 and to decrease the valug<a§ by the same factor to study
still larger time. Figure 3 makes the same comparison after the shock wave and the the
layer have clearly separateik=46.4 (16,000 time steps KFVS; 1000 DSMC), and it is
seen that agreement is very good, except at the shock front itself for which it is well kno
that NS gives a poor prediction for the shock-wave profile.

The inherent statistical fluctuations which are characteristic of the DSMC method, es
cially for a nonsteady problem for which extended time averaging is not possible, does
allow for a detailed study of small differences represented by the temperature slip see
Figs. 2 and 3. Nevertheless, in Fig. 4 we attempt to make a comparison of the time depen
temperature slip at the piston surface for the two methods. In this case, the DSMC res
were time averaged over a small local interval about each plotted point to reduce statis
scatter. These simulations were carried out with a number density of approximately 8
particles per cell near the piston surface and roughly one million particles for the entire s
ulation. DSMC results were obtained f&ng =4, 8, 16, 32 by sequentially reducing the
cell size by a factor of 2 while holdiniy, fixed. These data include the runs shown in Figs. -
and 3, and likewise are for the same conditions. Because of the varying cell size, it woul
necessary to extrapolate the data for each run to the position of the piston surface in c
to produce a consistent display, but this approach amplifies statistical scatter and pr
impractical for a time-dependent simulation with DSMC. The alternative was to select
center position of the largest DSMC célng = 4) as the reference and display the data fol
all runs for that position. This approach has the added feature that it provides a consisti
check on the DSMC method itself. As seen in Fig. 4, the DSMC data for different cell siz
overlap nicely, demonstrating that convergence has been obtained. Two curves are shov
the KFVS calculation: the dashed curve was obtained by extrapolating the data to the pi
surface; and the solid curve represents the value at the center position of the largest cell
in the DSMC methodKng = 4). For the KFVS calculation, the cell size fing =16 was
used. The separation between the two curves shows that the temperature gradient ne
piston surface is very steep, necessitating the use of a very small cell size. In view of the
ferent curves displayed, the solid curve for KFVS should be compared with the DSMC d:
which appears to suggests that the boundary conditions (7)—(11) for KFVS slightly overy
dict the temperature slip for these conditions. For large time the two should agree fully, b
did not appear feasible to extend the DSMC runs to verify this with the computer workstat
employed in this part of the study. When considering the fact that the NS equations are
expected to represent the correct physics for large nonequilibrum (for exayjples 0.1
forf < 50, as found from Figs. 1 and 4), the agreement seen in Figs. 2—4 is very encourag
since it confirms the accepted view that slip conditions at a surface represent the princ
corrections needed to be added to the NS system when dealing with a slightly rarefied fl
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FIG.3. Gastemperature and density ahead of an isothermal piston (loc&ted®tffor KFVS (solid curves)
and DSMC (symbols), for M= 1, ¥ =5/3, and at a timd = 46.4 when the shock wave and thermal layer
have clearly separated, showing a well-defined thermal layer. The DSMC results ldng fo# while the KFVS
results are foKny, = 16, i.e.,Ax for KFVS is four times smaller than for DSMC.

If any discrepancy exists between the values of the split kinetic fluxes defined
Egs. (1)-(6) and the corresponding values from DSMC simulations, then the differet
should be seen at the piston surface where nonequilibrium is the greatest. Figure 5 pre
the corresponding comparisons for the mass and energy split fluxes and shows th:
agreement for a monatomic gas is extremely good. In the DSMC simulations the pos
split fluxes were obtained by monitoring the passage of individual particles as they left
gas and crossed the piston surface, while the negative split fluxes were obtained by
itoring the particle emission from the piston surface introduced by the DSMC bound
conditions. For the KFVS solution the state of the flow from the numerical solution w
used to evaluate the positive split fluxes using the defining equations (1)—(6). Similarly.
conditions representing the isothermal piston were used to compute the negative split flt
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FIG. 4. Gas temperature at the surface of an isothermal piston versus dimensionless timgJfes Mand
y =5/3. DSMC cell dimensions correspond€o, = 2 (0); 4 (x); 8 (*); 16 (+). The KFVS solution was evaluated
for Kny = 16 and projected to the piston surface (dashed curve); same solution was evaluated at cell center f
largest DSMC cell (solid curve).

In the case of a polyatomic gas, the Eucken approximation was introduced in [4]
develop the split fluxes for energy; and it is of interest to determine whether the partict
approximation used is supported by DSMC. The same simulations were repeated for
case of an ideal diatomic gas, assuming rotational degrees of freedom are in equilibr
with translation(y = 7/5), and a comparison of split fluxes for momentum and energy al
shown in Fig. 6. The excellent agreement seen confirms that the Eucken approximatiol
implemented in [4], is capturing the proper physics in the splitting of energy flux for bo
the translational and rotational components.

IV. IMPULSIVELY STARTED FLAT PLATE

Viscous stress becomes the dominant nonequilibrium effect for an impulsively started
plate, which provides an alternate environment for comparison. For the one-dimensic
geometry of an infinite, impulsively started flat isothermal plate moving parallel to i
surface in, say, thg direction, thet; andt, coordinates may be disregarded in (1)—(6);
and the shearing stres§f, along with the normal heat-flux componéifff, become the
principal nonequilibrium quantities. Again, for calculational purposes itis easier to consit
a moving gas and a stationary plate. At the plate surface we may th&psé€t and thus
a1 =0 anday; =1/./7. On using Eq. (1) to represent the gas near the plate and on usi
boundary condition (7), exactly the same density and temperature relations are found a
the impulsively started piston, given by (11).
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FIG.5. Kinetic split fluxes evaluated at the surface of an isothermal piston, fa&M-1 andy =5/3. The
numerical solution of the KFVS equations (solid curves) are compared with results from a DSMC simula
(symbols). Mass and energy split fluxes are referenced to the vajagand poCS, respectively.

On using (1) and (3) to represent the gas near a stationary surface, in whichgfg se
to zero because of uniformity, and on using boundary condition (9), we find

1 1 1
Fuio =|—= 1-Z%CE) — ZptCE| . 17
( t1 mom)surface {ﬁ p31< 2Tnn> 2pfnt1]g ( )

The definition for the total flux of transverse momentum leads to the substitut
(Ft1—mom)surface= — Tnt1, becauses, = 0. On solving forS;, we then obtain the relation

b1 1, -1
s= - (1- 5e6E) ase (18)

The quantityS; represents the dimensionless velocity of the fluid next to a station:
surface, i.e. velocity slip. Although Eq. (18) does not depend directly on the value of
ratio of specific heatg, however, if the velocity slip is based on the reference plate spe
Uplate and a plate Mach number MMk is introduced, then the factqyw /2 is replaced by
V7 /2y /Mpareand ay dependence becomes evident. Here again, if we negdffthén the
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FIG. 6. Kinetic split fluxes evaluated at the surface of an isothermal piston, fa&M-=1 andy =7/5. The
numerical solution of the KFVS equations (solid curves) are compared with results from a DSMC simulat
(symbols). Momentum and energy split fluxes are referenced to the yajejeand poc3, respectively.

above relation can be shown to agree fully with Patterson’s result for velocity slip (Ref.
Eq. (31), p. 125]). If boundary condition (10) is handled in the same way as for the pist
and if the quadratic termS§17,; and Sfl are dropped, then exactly the same relation for th
temperature slip as for the impulsively started piston is gotten, i.e. Eq. (14).

Just as for the case of the impulsively started piston, Eqg. (18) can be used to quali
numerical solution of the KFVS equations for an impulsively started flat plate. Except 1
a greater sensitivity to the impulsive start, which requires the use of still smaller time st
as the reference cell Knudsen number is increased, the conclusions drawn are esser
the same as those found in the study that led to the data presented in Fig. 1 and will nc
repeated. Likewise, in order to emphasize nonequilibrium effects, an isothermal plate
a Mach number of unity were selected as appropriate conditions for study.

Using the more descriptive frame of reference where the gas is initially stationary and
plate is given an impulsive start, KFVS and DSMC results for velocity are displayed a
compared in Fig. 7 for the dimensionless tinies12.4 andf = 68.0. As can be seen, even
though the velocity slip is fairly large at these short times, the KFVS solution compar
extremely well with the DSMC results. It is also of interest to make comparisons with t
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0 0.2 0.4 0.6 0.8 1
Fluid Velocity, w/wpqte

FIG.7. Velocity distribution above an impulsively started isothermal flat plate, fard= 1 andy =5/3. The
two times shown are fdr=12.4 and 68.0, with KFVS (solid curves), DSMC (symbols), no-slip KFVS (dashe
curves), and no-slip incompressible (dotted curves) displayed.

corresponding KFVS solution for no-slip boundary conditions identified in the figure
the dashed curves. Because the peak density and temperature variations are small (4
9%, respectively), it is reasonable to assume that the velocity can be approximated b
exact incompressible solution given byu, = 1 — erf(n), wheren? = y?/4vt = 8y2/5x{.
This solution is shown by the dotted curves, which provide confidence that the nume
method used is capable of handling the impulsive start. In Fig. 8 the gas velocity at
surface of the plate is displayed as a function of time, showing that it approaches the |
velocity asymptotically. The DSMC results were obtainedog =4 and 8; and data for
both runs were plotted for the location corresponding to the center position of the lar
cell, Kng=4. The complete overlap of the symbols clearly demonstrates consistency
convergence, in the DSMC results. In the case of the KFVS solution, the datager12
were used and extrapolated to the plate surface (dashed curve); the data were also eve
at the center position of the largest cell (solid curve) used in the DSMC simulations.
the gradient near the plate is more modest here, the agreement is sufficiently close
one does not have to distinguish between the different curves. Equation (18) shows th:
magnitude oiﬁtEl is virtually the same as the slift— u/upiate) S€€N in the figure. Therefore,
the degree of nonequilibirum is quite large, yet the prediction for velocity slip agrees v
nicely with DSMC for these rather extreme conditions.

Continuing with comparisons for the split kinetic fluxes evaluated at the plate surf
Fig. 9 presents the results for the case of a monatomic gas, and the agreement s
remarkably good. The corresponding KFVS solution for no-slip boundary condition:s
shown by the dashed curves. In this case the difference between slip and no-slip is
nificant. However, when the exact incompressible solution was used to compute the ¢
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FIG. 8. Gas velocity at the surface of an impulsively started isothermal flat plate versus time, fee=N
andy =5/3. KFVS solution is forkKn, =12 with extrapolation to surface (dashed curve) and location at cel
center for largest DSMC cell (solid curve). DSMC simulation isop =4 (o); 8 (+).

fluxes, the results superposed directly on the no-slip KFVS curves, confirming that the |
ference seen is real. Likewise, Fig. 10 presents the split fluxes for a diatomic gas, shov
equally good agreement. These quantities are displayed for a frame of reference wher
gas is initially stationary and the plate is given an impulsive start. Therefore, asymptc
results deduced from Eqs. (1)-(6) must be transformed to obtain the limiting values s
in Figs. 9 and 10. Beyond the excellent comparisons seen, the most important observ:
relates to the component quantities making up the energy split fluxes for the diatomic ga
is clear that the translational and rotational degrees of freedom are being properly hanc
and therefore, the approach used in Ref. [4], in introducing the Eucken approximati
appears to be working well.

V. LID-DRIVEN CAVITY FLOW

In the two cases studied above, heat flux and viscous stress were separately dominar
both can become important in the lid-driven cavity problem, and an element of comple»
is added by the two dimensions of the flow. However, focus will be placed on the stea
state condition for which the CFL restriction should not be as severe as for the case o
impulsive start. Here again, it is useful to assume isothermal surfaces to produce a |
degree of nonequilibrium. On the other hand, the lid Mach number was sefyte- M5
so that nonequilibrium effects in the corners for steady state were not unduly large. -
reference Knudsen number, based on the dimension of the squarelcavitydefined by
Kn. =Xo/L, was set equal to 0.01, whexg is the mean-free path-length evaluated at the
wall temperature and the initial state of the gas. The value of the Knudsen number
chosen so as to correspond to the near-continuum regime, where NS is expected to be
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FIG. 9. Kinetic split fluxes evaluated at the surface of an isothermal flat plate, far.#M1 andy =5/3.
The numerical solution of the KFVS equations (solid curves) are compared with results from a DSMC simulz
(symbols) and no-slip KFVS (dashed curves). Momentum and energy split fluxes are referenced to thgetalue
andpocs, respectively.

and the DSMC simulation does not become overly intensive. In the following, discuss
will be limited to the case of a diatomic gas, as the monatomic case has been adeqt
covered above.

A steady-state, two-dimensional KFVS solution, based on a<1283 square mesh, is
presented in Fig. 11, showing the component of velocity lying parallel to the lid. In 1
figure, the lid is on the near face and moves from left to right for which the velocity
defined to be negative. The effect of velocity slip is clearly seen, both on the lid itself an
the two corners formed by the lid and walls. No slip would correspond to the magnitud
the dimensionless fluid velocity/c, being equal to the lid Mach number in this case 0.t
The view shown is useful in serving as a mental aid in presenting the comparisons t
reviewed below. For example, in the views that follow the lid, together with the two fac
on either side, will be unwrapped and displayed in planar form when various bounc
quantities are compared.
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FIG. 10. Kinetic split fluxes evaluated at the surface of an isothermal flat plate far.™M1 andy =7/5.
The numerical solution of the KFVS equations (solid curves) are compared with results from a DSMC simulat
(symbols). Momentum and energy split fluxes are referenced to the vajceand poci, respectively.

In order to judge the validity of the numerical solution presented in Fig. 11, analytic
relations similar to Eqgs. (14) and (18) are needed. Using a coordinate systemmibere
taken to be perpendicular to the lid, is parallel to the lid and?2 is ignorable, then at
various points along the lid one would expect the stres§EsandzF and the heat flux
components|SE andgSE to be important. On this basis the slip relations found above me
have to be generalized. When the algebra leading to Eq. (11) is repeate&usifalone,
exactly the same relations are found. A slight generalization to (18) is required, given t

si=-(1-3e%) [ Fess+ pa] 9

which introduces the heat flux component aligned with the lid, a quantity that may
important in the corners. More terms must be retained in the generalization of (13) for
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temperature slip which becomes

_}ACE &_ _ 7’__1 ACE 3y-1 2 \ ~CE
(1 2r””>Tg_1 (y+1)[5ﬁq” g =g )

-1
+2<h>31[31+ﬁ%ﬁ5+qg£]. (20)

In developing Eqg. (20), the coordinate system in which the gas is moving and the we
stationary was again used. Therefore, a transformation must be introduced when (Z
used to analyze the moving lid. Because of the complexity of (19) and (20), the apprc
employed in Fig. 1 is less useful here. Here too, Egs. (19) and (20) can be shown to re
to Patterson’s [9] results.

In the coordinate system defined by Fig. 11, the velocity compondies parallel to
the lid while the velocity component lies parallel to the two faces on either side of the
lid. Therefore, if we unwrap the adjacent faces and display the tangential velocity al
the surface as a function of the surface position for the KFVS solution, we obtain
function seen in the top view of Fig. 12, shown as a solid curve. This function conte
bothu andv and is not merely a copy of the edge values doshown in Fig. 11. The
corresponding theoretical prediction is given by Eg. (19) and is shown as the heavy dt
curve (a transformation must be applied to (19) to obtain the values along the lid). Itis c
that agreement is only found outside the two corner regions. This can be understoc
reviewing the plot shown in the bottom view of the figure, which gives the normal veloc
componentS, as a function of the surface positien Equation (19) was derived on the
basis of the assumptio® = 0 and it is clear from the plot fog, that the assumption does
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FIG. 12. Dimensionless tangential and normal velocities at the surface of the lid and cavity for the KF\
solution. Upper view: numerical solution of the KFVS equations (solid curve) and the theoretical expressi
Eq. (19), for the tangential velocity; /c, (dotted curve). Lower view: velocity component normal to the surface
of the cavity,S,, for the KFVS solution.

not hold in the two corners. Therefore, use of Eq. (19) as a check on the validity of |
numerical solution obtained must be confined to areasied5, 1.5, 2.5; and this check
clearly shows that reliable numerical results were in fact obtained.

Practical considerations made it necessary to limit the DSMC simulation toxa684
array of cells. Past experience with the DSMC method led to the decision to use an :
rage number density of approximately 64 particles per cell, leading to a total of roug
0.25 x 1P particles employed in the simulation. Roughly 12,000 time steps were usec
the time averaging of the data which gave a sample size for each cell of approxima
0.75x 10°. The top view of Fig. 13 compares the KFVS solution against DSMC results f
the tangential velocity versus the surface position. In each case the data were projected:
position of the surface for comparison. As can be seen, the correspondence is quite com|
even including sharp spikes in the two corners. Consequently, the KFVS prediction for
slip velocity is quite outstanding for these conditions. Because of the low Mach numi
chosen, Ny = 0.5, the temperature rise was fairly small (less than 5%) and the DSV
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FIG. 13. Tangential velocityu, /c,, and temperaturd;/ Ty, at the surface of the lid and cavity for the KFVS
solution (solid curves) versus result for a DSMC simulation (symbols).

data for temperature exhibit considerable statistical scatter, as is seen in the bottom vi
the figure, and a fully equivalent judgment concerning the KFVS temperature slip, DS
results, and Eg. (20) cannot be made.

Because the wall temperature is specified for an isothermal wall, the KFVS solution
controls the density of the hypothetical wall gag (see Eq. (11)). Furthermore, becaus
the emission from the wall is controlled by a Maxwellian distribution in the particul
application (isothermal wall) of the KFVS method being considered, the split fluxes direc
out of the wall are not overly sensitive to the KFVS solution. Thus, it makes sense to fc
attention on the split fluxes directed out of the gas and into the wall. Figure 14 give
comparison for this single component of the two kinetic split fluxes for energy, where
upper set is for the translational energy component and the lower set is for the rotati
energy component. As seen, the KFVS predictions compare extremely well with the DS
results, including the excursions in the two corners. Likewise, the good match for rotatic
energy shows that the form of the Eucken approximation employed in the developme
the KFVS method proves to be valid even for these conditions.
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FIG. 14. Translational (upper curves) and rotational (lower curves) energy split fluxes at the surface of the
and cavity for KFVS (solid curves) and DSMC (symbols). Energy split fluxes are referenced to thesglue

Although prediction of the values of the fluid variables at the lid and walls represet
a more severe test of the theory than that for the interior regions of the lid-driven cay
problem, it is also of interest to consider one comparison for the entire flow. Figure
displays thev-component of velocity for a number of transverse slices positioned alol
the x axis. The KFVS solution is given by the solid curves and the DSMC results by tl
symbols, likewise showing good agreement between the two.

VI. CONCLUDING REMARKS

The method of kinetic flux—vector splitting for the Navier—Stokes equations was i
troduced primarily as the continuum counterpart to the DSMC method in the event
development of a hybrid scheme [4]. A principal requirement in joining the two metho
at a fluid interface is the presence of compatible split fluxes. Because KFVS is not valic
rarefied flow and the use of the DSMC method becomes overly costly in the deep con
uum, matching must be carried out in the near-continuum, where the flow is only sligh
rarefied, a degree of rarefaction which may be defined as the regime where the local
Knudsen number is of order unity. These conditions were considered in selecting the
conditions reported above and very good agreement was found for the split fluxes in the
schemes, even for the extreme nonequilibrium conditions found near isothermal surfa
conditions surely more severe than those found at most any other interface located ir
flow. Because the split fluxes for mass and momentum do not depenpdibis certainly
expected that one would obtain equally good results for monatomic and diatomic gase:
these comparisons. However, the split fluxes for energy clearly depend on the additic
internal energy carried by polyatomic molecules and for this case it was necessary to n
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FIG. 15. Comparison of the-component of velocityy /¢y, in the cavity for KFVS (solid curves) and DSMC
(symbols).

use of a particular interpretation of the Eucken model to carry out the splitting (see Ref. |
Therefore, comparisons such as those seen in Figs. 10 and 14 prove to be of great
in justifying the assumptions made. Beyond the fact that the split fluxes defined in KF
and DSMC have been shown to agree remarkable well, which is an important step ir
development of a hybrid scheme, it was also shown that the slip conditions (first-ol
slip) for temperature and velocity at a material surface also agreed rather well. This i
important result because the flow is fully expected to be slightly rarefied near a mats
surface for most conditions for which a hybrid scheme would be employed.
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